List 0

"Previous topics"

Basic algebra

1. Find the two values of r for which $r^{2}-2 r-15=0 . r_{1}=-3, r_{2}=5$
2. Find the two values of r for which $r^{2}-2 r+15=0 . r_{1}=1+i \sqrt{14}, r_{2}=1-i \sqrt{14}$
3. (a) Solve $\sqrt{y}=\sin (x)$ for y. $y=(\sin (x))^{2}$
(b) Solve $\ln (y)=\sin (x)$ for y. $y=e^{\sin (x)}$
4. Solve $\ln (x)-3=7 t$ for x. $x=e^{3+7 t}$ or $x=\left(e^{3}\right) e^{7 t}$
5. Solve $\frac{-1}{2 y^{2}}=C+\sqrt{x^{2}+1}$ for $y . \quad y=\frac{ \pm 1}{\sqrt{C-2 \sqrt{x^{2}+1}}}$
6. Solve $e^{y}=9 \sin (3 t)-t^{2}+C$ for y. $y=\ln \left(9 \sin (3 t)-t^{2}+C\right)$
7. Find the value of C for which $\frac{1}{2}=\frac{-3}{1+C} . C=-7$
8. Find the real value of C for which $\sin (0)=10 C e^{0}-\frac{2}{25 C^{2}} \cdot C=\frac{1}{5}$
9. Find values of A and B such that

$$
A \cdot(x+6)+B \cdot(x-2)=2 x-6 .
$$

$A=\frac{-1}{4}, B=\frac{9}{4}$
10. Find values of C_{1} and C_{2} such that both of these equations are true:

$$
\begin{aligned}
2 C_{1}+2 C_{2} e^{0}-3 \sin (0)-0 \sin (0)+0 \cos (t) & =0, \\
2 C_{2} e^{0}-3 \cos (0)+-0 \sin (0)-\sin (0)-0 \cos (0)+\cos (0) & =1
\end{aligned}
$$

11. If $y(x)=\frac{-1}{\sqrt{C-2 \sqrt{x^{2}+1}}}$ and $y(0)=-1$, find the value of C. $C=3$

Linear algebra

12. Calculate the length (also called magnitude or norm) of the vector $5 \hat{\imath}+\hat{\jmath}+5 \hat{k}$. $\sqrt{5^{2}+1^{2}+5^{2}}=\sqrt{\sqrt{51}}$
13. Calculate $|[2,-3]| \cdot \sqrt{2^{2}+(-3)^{2}}=\sqrt{4+9}=\boxed{\sqrt{13}}$
14. Give a unit vector (that is, a vector of magnitude 1) that points in the same direction as the vector $\vec{v}=[15,8]=\left[\begin{array}{c}15 \\ 8\end{array}\right]=15 \hat{\imath}+8 \hat{\jmath} \cdot \frac{1}{|\vec{v}|} \vec{v}=\frac{15}{17} \hat{\imath}+\frac{8}{17} \hat{\jmath}$
15. Give a unit vector that points in the same direction as $5 \hat{\imath}-2 \hat{\jmath} . \frac{5}{\sqrt{28}} \hat{\imath}-\frac{2}{\sqrt{29}} \hat{\jmath}$
16. Calculate the dot product (also called scalar product) of the vectors $\vec{u}=[0,1]$ and $\vec{v}=[-8,5] .5$
17. If $|\vec{v}|=8$ and $|\vec{w}|=7$ and the angle between \vec{v} and \vec{w} is $120^{\circ}=\frac{2}{3} \pi$, what is the value of $\vec{v} \cdot \vec{w}$? (8)(7) $\cos \left(\frac{2}{3} \pi\right)=(8)(7)\left(-\frac{1}{2}\right)=-28$
18. If $|\vec{v}|=3$ and $|\vec{n}|=16 \ldots$
(a) ... and \vec{v} points in the same direction as \vec{n}, what is the value of $\vec{v} \cdot \vec{n}$? 48
(b) \ldots and \vec{v} is perpendicular to \vec{n}, what is the value of $\vec{v} \cdot \vec{n}$? 0
(c) ... and \vec{v} points in the exact opposite direction as \vec{n} (this is sometimes called "anti-parallel"), what is the value of $\vec{v} \cdot \vec{n} ?-48$
19. If $|\vec{u}|=1$ and $|\vec{v}|=4$,
(a) is it possible that $\vec{u} \cdot \vec{v}=2 \sqrt{3}$? yes
(b) is it possible that $\vec{u} \cdot \vec{v}=2$? yes
(c) is it possible that $\vec{u} \cdot \vec{v}=-2$? yes
(d) is it possible that $\vec{u} \cdot \vec{v}=3.81$? yes
(e) is it possible that $\vec{u} \cdot \vec{v}=4.61$? no
(f) is it possible that $\vec{u} \cdot \vec{v}=-\sqrt{17}$? no
(g) is it possible that $\vec{u} \cdot \vec{v}=-\sqrt{7}$? yes
20. If $|\vec{u}|=1$ and $|\vec{w}|=7$, describe ALL possible values that $\vec{u} \cdot \vec{w}$ could have. anything between -7 and 7
21. If $|\vec{u}|=1$ and $\vec{n}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$,
(a) what is the largest possible value that $\vec{u} \cdot \vec{n}$ could have? 5
(b) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}$ has the value from part (a). $\vec{u}=\left[\frac{-3}{5}, \frac{4}{5}\right]$ is the only correct example.
(c) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}=0$. There are two possibilities: $\vec{u}=\left[\frac{4}{5}, \frac{3}{5}\right]$ or $\vec{u}=\left[\frac{-4}{5}, \frac{-3}{5}\right]$
22. Write $\frac{5 x+6}{x^{2}-6 x+8}=\frac{5 x+6}{(x-2)(x-4)}$ as a sum of partial fractions.

That is, find A and B such that

$$
\frac{5 x+6}{x^{2}-6 x+8}=\frac{A}{x-2}+\frac{B}{x-4}=\frac{-8}{x-2}+\frac{13}{x-4}
$$

23. Write $\frac{2 x-6}{(x-2)(x+6)}$ as a sum of partial fractions. $\frac{-1 / 4}{x-2}+\frac{9 / 4}{x+6}$
24. Write $\frac{36}{x^{3}+9 x^{2}+18 x}$ as a sum of partial fractions. $\sqrt{\frac{-4}{x+3}+\frac{2}{x+6}+\frac{2}{x}}$

Analysis 1

25. Give the derivative (with respect to t) of $y=2 e^{3 t}+4 \sin (5 t)+6 \cos (7 t)+8 t^{9}+10$. $y^{\prime}=6 e^{3 t}+20 \cos (5 t)-42 \sin (7 t)+72 t^{8}$
26. If $y=x^{9}$, calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}+y^{\prime}(x)+y^{\prime} .9 x^{8}+9 x^{8}+9 x^{8}=27 x^{8}$
27. If $y=5 e^{x} \sin (\sqrt{14} x)$, calculate $y^{\prime \prime}-2 y^{\prime}+15 y$ and simplify your answer. 0
28. Find all critical points of $f(x)=x^{4}-4 x^{3}-8 x^{2}+2$ and classify each one as a local minimum, local maximum, or neither.
```
x=-1 is a local min, x=0 is a local max, x=4 is a local min
```

29. Find and classify the critical points of $f(x)=e^{x^{2}}(2 x+3)$.
$x=-1$ is a local max, $x=-\frac{1}{2}$ is a local min
30. If $f(3)=5, f^{\prime}(3)=0$, and $f^{\prime \prime}(3)=2$, could $x=3$ be a local minimum of $f(x)$? yes Could it be a local maximum? no
31. Find the following indefinite integrals.
(a) $\int 11 x^{4} \mathrm{~d} x=\frac{11}{5} x^{5}+C$
(b) $\int x^{-1 / 2} \mathrm{~d} x=2 x^{1 / 2}+C$ or $2 \sqrt{x}+C$
(c) $\int(\sin (2 x))^{2} \cos (2 x) \mathrm{d} x=\frac{1}{6}(\sin (2 x))^{3}+C$ using substitution $u=\sin (2 x)$
(d) $\int \frac{x^{4}}{\sqrt{x^{5}+1}} \mathrm{~d} x=\frac{2}{5} \cdot \sqrt{x^{5}+1}+C$ using substitution $u=x^{5}+1$
(e) $\int 11 y^{4} \mathrm{~d} y=\frac{11}{5} y^{5}+C$
(f) $\int \frac{1}{y^{3}} \mathrm{~d} y=\frac{-1}{2 y^{2}}+C$
(g) $\int \frac{1}{y^{2}} \mathrm{~d} y=\frac{-1}{y}+C$
(h) $\int \frac{1}{y} \mathrm{~d} y=\ln (y)+C$
(i) $\int e^{6 t} \mathrm{~d} t=\frac{1}{6} e^{6 t}+C$
(j) $\int t e^{t} \mathrm{~d} t=t e^{t}-e^{t}+C$ using "parts"
(k) $\int e^{-x}(2 x-3) \mathrm{d} x=(1-2 x) e^{-x}+C$ using "parts"
32. Find the definite integral $\int_{0}^{1}\left(4 x^{3}-9 x^{2}\right) \mathrm{d} x$. (Your answer should be a number.) -2
33. Give the definite integral $\int_{0}^{1}\left(4 x^{3}-9 x^{2} k^{2}\right) \mathrm{d} x$. (Your answer should be a formula with k.) $1-3 k^{2}$
34. Calculate $\int_{a}^{b} x \mathrm{~d} x$. (Your answer should be a formula with a and b.) $\frac{1}{2} b^{2}-\frac{1}{2} a^{2}$
35. Calculate $\int_{q^{2}}^{\sin q} x \mathrm{~d} x$. (Your answer should be a formula with q.) $\frac{1}{2}(\sin q)^{2}-\frac{1}{2} q^{4}$
36. Calculate (a) $\int_{0}^{3} x e^{2 x} \mathrm{~d} x$, (b) $\int_{0}^{3} t e^{2 t} \mathrm{~d} t$, (c) $\int_{0}^{3} y e^{2 y} \mathrm{~d} y$. All are $\frac{1+5 e^{6 t}}{4}$.
