Analysis 2, Summer 2024

List 0

"Previous topics"

Basic algebra

1. Find the two values of r for which $r^2 - 2r - 15 = 0$. $r_1 = -3$, $r_2 = 5$

2. Find the two values of r for which $r^2-2r+15=0$. $r_1=1+i\sqrt{14},\ r_2=1-i\sqrt{14}$

3. (a) Solve $\sqrt{y} = \sin(x)$ for y. $y = (\sin(x))^2$

(b) Solve ln(y) = sin(x) for y. $y = e^{sin(x)}$

4. Solve $\ln(x) - 3 = 7t$ for x. $x = e^{3+7t}$ or $x = (e^3)e^{7t}$

5. Solve $\frac{-1}{2y^2} = C + \sqrt{x^2 + 1}$ for y. $y = \frac{\pm 1}{\sqrt{C - 2\sqrt{x^2 + 1}}}$

6. Solve $e^y = 9\sin(3t) - t^2 + C$ for y. $y = \ln(9\sin(3t) - t^2 + C)$

7. Find the value of C for which $\frac{1}{2} = \frac{-3}{1+C}$. C = -7

8. Find the real value of C for which $\sin(0) = 10Ce^0 - \frac{2}{25C^2}$. $C = \frac{1}{5}$

9. Find values of A and B such that

$$A \cdot (x+6) + B \cdot (x-2) = 2x - 6.$$

 $A = \frac{-1}{4}, B = \frac{9}{4}$

10. Find values of C_1 and C_2 such that both of these equations are true:

$$2C_1 + 2C_2e^0 - 3\sin(0) - 0\sin(0) + 0\cos(t) = 0,$$

$$2C_2e^0 - 3\cos(0) + \cos(0) - \sin(0) - \sin(0) - \cos(0) + \cos(0) = 1.$$

 $C_1 = -2, C_2 = 2$

11. If $y(x) = \frac{-1}{\sqrt{C - 2\sqrt{x^2 + 1}}}$ and y(0) = -1, find the value of C. C = 3

Linear algebra

12. Calculate the length (also called magnitude or norm) of the vector $5\hat{i} + \hat{j} + 5\hat{k}$. $\sqrt{5^2 + 1^2 + 5^2} = \sqrt{51}$

13. Calculate |[2, -3]|. $\sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}$

- 14. Give a unit vector (that is, a vector of magnitude 1) that points in the same direction as the vector $\vec{v} = [15, 8] = \begin{bmatrix} 15 \\ 8 \end{bmatrix} = 15\hat{\imath} + 8\hat{\jmath}$. $\frac{1}{|\vec{v}|}\vec{v} = \begin{bmatrix} \frac{15}{17}\hat{\imath} + \frac{8}{17}\hat{\jmath} \end{bmatrix}$
- 15. Give a unit vector that points in the same direction as $5\hat{i} 2\hat{j}$. $\frac{5}{\sqrt{28}}\hat{i} \frac{2}{\sqrt{29}}\hat{j}$
- 16. Calculate the dot product (also called scalar product) of the vectors $\vec{u} = [0, 1]$ and $\vec{v} = [-8, 5]$.
- 17. If $|\vec{v}| = 8$ and $|\vec{w}| = 7$ and the angle between \vec{v} and \vec{w} is $120^{\circ} = \frac{2}{3}\pi$, what is the value of $\vec{v} \cdot \vec{w}$? $(8)(7)\cos(\frac{2}{3}\pi) = (8)(7)(-\frac{1}{2}) = \boxed{-28}$
- 18. If $|\vec{v}| = 3$ and $|\vec{n}| = 16$...
 - (a) ... and \vec{v} points in the same direction as \vec{n} , what is the value of $\vec{v} \cdot \vec{n}$? 48
 - (b) ... and \vec{v} is perpendicular to \vec{n} , what is the value of $\vec{v} \cdot \vec{n}$?
 - (c) ... and \vec{v} points in the exact opposite direction as \vec{n} (this is sometimes called "anti-parallel"), what is the value of $\vec{v} \cdot \vec{n}$? $\boxed{-48}$
- 19. If $|\vec{u}| = 1$ and $|\vec{v}| = 4$,
 - (a) is it possible that $\vec{u} \cdot \vec{v} = 2\sqrt{3}$? yes
 - (b) is it possible that $\vec{u} \cdot \vec{v} = 2$? yes
 - (c) is it possible that $\vec{u} \cdot \vec{v} = -2$? yes
 - (d) is it possible that $\vec{u} \cdot \vec{v} = 3.81$? yes
 - (e) is it possible that $\vec{u} \cdot \vec{v} = 4.61$? no
 - (f) is it possible that $\vec{u} \cdot \vec{v} = -\sqrt{17}$? no
 - (g) is it possible that $\vec{u} \cdot \vec{v} = -\sqrt{7}$? yes
- 20. If $|\vec{u}| = 1$ and $|\vec{w}| = 7$, describe ALL possible values that $\vec{u} \cdot \vec{w}$ could have. anything between -7 and 7
- 21. If $|\vec{u}| = 1$ and $\vec{n} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$,
 - (a) what is the largest possible value that $\vec{u} \cdot \vec{n}$ could have? 5
 - (b) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n}$ has the value from part (a). $|\vec{u}| = \left[\frac{-3}{5}, \frac{4}{5}\right]$ is the only correct example.
 - (c) give an example of a vector \vec{u} such that $\vec{u} \cdot \vec{n} = 0$. There are two possibilities: $|\vec{u} = \left[\frac{4}{5}, \frac{3}{5}\right]|$ or $|\vec{u} = \left[\frac{-4}{5}, \frac{-3}{5}\right]|$
- 22. Write $\frac{5x+6}{x^2-6x+8} = \frac{5x+6}{(x-2)(x-4)}$ as a sum of partial fractions. That is, find A and B such that

$$\frac{5x+6}{x^2-6x+8} = \frac{A}{x-2} + \frac{B}{x-4} = \boxed{\frac{-8}{x-2} + \frac{13}{x-4}}$$

23. Write
$$\frac{2x-6}{(x-2)(x+6)}$$
 as a sum of partial fractions. $\sqrt{\frac{-1/4}{x-2} + \frac{9/4}{x+6}}$

24. Write
$$\frac{36}{x^3 + 9x^2 + 18x}$$
 as a sum of partial fractions. $\frac{-4}{x+3} + \frac{2}{x+6} + \frac{2}{x}$

Analysis 1

25. Give the derivative (with respect to t) of
$$y = 2e^{3t} + 4\sin(5t) + 6\cos(7t) + 8t^9 + 10$$
. $y' = 6e^{3t} + 20\cos(5t) - 42\sin(7t) + 72t^8$

26. If
$$y = x^9$$
, calculate $\frac{dy}{dx} + y'(x) + y'$. $9x^8 + 9x^8 + 9x^8 = 27x^8$

27. If
$$y = 5e^x \sin(\sqrt{14}x)$$
, calculate $y'' - 2y' + 15y$ and simplify your answer. 0

28. Find all critical points of $f(x) = x^4 - 4x^3 - 8x^2 + 2$ and classify each one as a local minimum, local maximum, or neither.

$$x = -1$$
 is a local min, $x = 0$ is a local max, $x = 4$ is a local min

29. Find and classify the critical points of $f(x) = e^{x^2}(2x+3)$.

$$x = -1$$
 is a local max, $x = -\frac{1}{2}$ is a local min

- 30. If f(3) = 5, f'(3) = 0, and f''(3) = 2, could x = 3 be a local minimum of f(x)? yes Could it be a local maximum? no
- 31. Find the following indefinite integrals.

(a)
$$\int 11 x^4 dx = \frac{11}{5} x^5 + C$$

(b)
$$\int x^{-1/2} dx = 2x^{1/2} + C$$
 or $2\sqrt{x} + C$

(c)
$$\int (\sin(2x))^2 \cos(2x) dx = \boxed{\frac{1}{6}(\sin(2x))^3 + C} \text{ using substitution } u = \sin(2x)$$

(d)
$$\int \frac{x^4}{\sqrt{x^5 + 1}} dx = \boxed{\frac{2}{5} \cdot \sqrt{x^5 + 1} + C} \text{ using substitution } u = x^5 + 1$$

(e)
$$\int 11 y^4 dy = \sqrt{\frac{11}{5}y^5 + C}$$

(f)
$$\int \frac{1}{y^3} \, \mathrm{d}y = \boxed{\frac{-1}{2y^2} + C}$$

$$(g) \int \frac{1}{y^2} \, \mathrm{d}y = \boxed{\frac{-1}{y} + C}$$

(h)
$$\int \frac{1}{y} \, \mathrm{d}y = \boxed{\ln(y) + C}$$

(i)
$$\int e^{6t} dt = \boxed{\frac{1}{6}e^{6t} + C}$$

(j)
$$\int te^t dt = te^t - e^t + C$$
 using "parts"

(k)
$$\int e^{-x}(2x-3) dx = (1-2x)e^{-x} + C$$
 using "parts"

- 32. Find the definite integral $\int_0^1 (4x^3 9x^2) dx$. (Your answer should be a number.) $\boxed{-2}$
- 33. Give the definite integral $\int_0^1 (4x^3 9x^2k^2) dx$. (Your answer should be a formula with k.) $1 3k^2$
- 34. Calculate $\int_a^b x \, dx$. (Your answer should be a formula with a and b.) $\left[\frac{1}{2}b^2 \frac{1}{2}a^2\right]$
- 35. Calculate $\int_{a^2}^{\sin q} x \, dx$. (Your answer should be a formula with q.) $\left[\frac{1}{2}(\sin q)^2 \frac{1}{2}q^4\right]$
- 36. Calculate (a) $\int_0^3 xe^{2x} dx$, (b) $\int_0^3 te^{2t} dt$, (c) $\int_0^3 ye^{2y} dy$. All are $\boxed{\frac{1+5e^{6t}}{4}}$.